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The usual way of posing the problem for the reflexion of wave trains from beaches 
seems inevitably to imply perfect reflexion. Energy considerations show that wave 
absorption must be associated with the degradation of mechanical energy either 
through wave breaking or viscous effects. Some experiments reported here showed 
substantial wave absorption in the absence of any breaking. 

We describe some theoretical and experimental work aimed at  assessing the role 
played by friction a t  the bottom in determining the reflexion coefficient of a beach. 
The results suggest that, if the parameter (vw3)*/ga2 is not too small, bottom friction 
can be a significant factor in the absorption process for waves on beaches. Here v 
represents the kinematic viscosity (or perhaps an ‘eddy’ viscosity) of the fluid, w is 
the frequency of the motions, cz is the slope of the beach and g is the acceleration due 
to gravity. 

1. Introduction 
Beaches have been used in hydraulics laboratories for over a century as the primary 

means of absorbing wave energy (see, for example, Stoker 1957; Meyer & Taylor 1972). 
It appears to be generally agreed that the main mechanism for absorbing the wave 
energy is the breaking that occurs over most beaches, converting the wave energy 
into heat or into circulations in the water (the undertow). However, in practice i t  is 
difficult to test this conjecture for the following reasons. It is not possible to  make a 
direct determination of the energy absorption, so this has to be inferred from obser- 
vations of the wave field remote from the beach, and such inferences are usually com- 
plicated by the nonlinear nature of waves in hydraulics experiments. Also, there are 
no adequate theoretical models to describe the physics of breaking waves on beaches. 

Nevertheless we were surprised to observe, in the course of another experiment, 
that ,  even when no breaking occurred, the beach reflected only a small fraction of 
the incident waves and this led us to reappraise what is known about wave absorption. 
An example of the experimental observations is given in figure 1, where the wave 
profiles observed in one of our experiments are shown at  a number of stations. (We 
also confirmed by direct visual observation that no wave breaking occurred over the 
beach.) In  the far field, where the wave amplitudes were small enough to justify the 
use of linear calculations, it was found that the reflected wave component was only 
about 10 % of the amplitude of the incident wave. So it would appear that  the property 
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FIGURE 1 (a). For the caption see facing page. 

of wave breaking is not necessarily fundamental to the mechanism of wave absorption 
on beaches. 

In  view of this result we would like to consider the following question. Suppose 
that the wave motion far from the beach has a given frequency and comprises a 
periodic wave train incident normally on the beach, together with a reflected train. 
What, then, is the relative magnitude of the incident and the reflected wave compo- 
nents, assuming that the waves do not break? 

A discussion of the usual rationale for modelling waves on beaches is given in 
Stoker’s (1957) book. Once the frequency of the waves is fixed, the irrotational flow 
over a plane sloping beach yields two different kinds of standing-wave solution to 
the linear wave problem. One of the solutions has finite amplitude, the other infinite 
amplitude, at  the shoreline. However, far from the shoreline, these two solutions 
have a phase difference of 7r/2 and thus a suitable combination of them can be used to 
describe an arbitrary simple-harmonic progressive wave. The fact that one of these 
solutions is singular at  the shoreline does not matter, it is argued, because in any case 
the waves break before they reach the shore and this precludes the applicability of 
the theory in that region. Since the specification of the amplitude of the progressive 
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FIQURE 1. The observed wave profiles a t  various distances from the mean shoreline for (time) 
periodic waves incident on a beech of slope 1 : 11.0. The period of the waves was 0.6930 s. Note 
that the horizontal lines shown in this figure do not necessarily represent the undisturbed level 
of the water. 

wave fixes uniquely the ‘strength’ of the singular solution, this procedure can, in 
principle, be used to describe the wave amplitudes over the beach (in the region beyond 
the breaking zone) when the magnitude of the reflected component is known. Whether 
or not this model gives a reasonable description of the wave amplitudes over a plane 
beach has not, to our knowledge, been carefully checked in the laboratory. 

If, on the other hand, wave breaking does not occur, the assumption that the flow 
is irrotational would, at  first sight, appear to be applicable. Then, if the motion in 
the far field can be described by simple harmonic waves at a given frequency, the 
conservation of mass and energy imply that the reflexion coefficient must be unity, 
irrespective of the wave amplitudes over the beach. 

Arguments of this kind led us to the conclusion that the wave absorption in the 
above experiment must have been the result of the degradation of mechanical energy 
through frictional effects on the beach, this being the most important type of viscous 
action. So, as a first step, we decided to investigate the effects of bottom friction over 
the beach when the wave amplitudes are so small that nonlinearities, deriving from 
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the free-surface condition, can be neglected. Under these conditions a standard 
boundary-layer calculation indicates that the effects of bottom friction are likely to 
be important in determining the wave field over the beach. An assessment of the 
experimental results in the light of these calculations suggests that  the same kind of 
mechanism could apply on the field scale. 

An important aspect of the problem, especially on the laboratory scale, is the way 
in which the free surface attaches to the beach. I n  order to vary this condition and to 
investigate the sensitivity of the absorption process to ‘inshore’ effects we have 
examined the situation in which the beach was terminated by a vertical cliff rather 
than the usual shoreline. The theory is also compared with a number of previous 
experimental investigations. 

The experiments indicated that the amplitude of the reflected-wave component was 
reduced significantly if a small gap was left between the sides of the beach and the 
walls of the channel. A brief description is also given of a property of the flow in the 
boundary layer not far from the shoreline. 

2. Energy considerations 
It can be shown that the property of perfect wave reflexion, manifested by many 

of the models for a periodic wave train incident on a beach, is a direct consequence of 
the assumed form for the far field and the conservation of mechanical energy. I n  
determining the appropriate form for the far field it should be recalled that considera- 
tions of mass flux in waves (see Phillips 1966) indicate that there must be a second- 
order mass outflow from the beach if the incident wave is not perfectly reflected. This 
is usually neglected (sensibly) in linearized theories where the far field might therefore 
be expected to  be described in terms of incident and reflected wave trains. This suggests 
.working on the basis of the following assumptions: (1) The flow is irrotational. (2) The 
surface elevation is a single-valued function of position and time, and this function 
is ‘smooth’. (3) At large distances from the shore the wave amplitudes are sufficiently 
small to justify the use of linear theory. It is further assumed that the far field consists 
of an incident periodic wave train, together with a reflected wave train of unknown 
amplitude and phase, but having the same frequency as the incident train. (4) The 
flow regime is a stationary, quasi-periodic function of time. (5) Surface tension is 
negligible. (6) The motions are independent of the distance along the shore. 

Given these conditions it follows that the rejexion coeficient is unity. A proof of this 
result, based on an energy argument, was included in the original version of the paper 
and is given in Mahony & Pritchard (197q.t 

Note that assumptions (1) and (2) preclude the possibility of breaking waves. 
However, there is no requirement that  the wave amplitude over the beach should be 
small and indeed there is nothing in the proof that in any way further limits the 
amplitudes reached as the waves approach the shore. 

On the other hand, there may be inconsistencies between the assumed representa- 
tion of the far field (assumption 3) and large inshore amplitudes. Should the waves 
grow to large amplitude near the beach (this need not necessarily happen) nonlinear 
effects will produce higher harmonics in the temporal field and consequently higher- 

? These reports are available from the National Lending Library. 
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frequency waves might be expected in the reflected wave field, Under these conditions 
our theorem merely ascertains that the incident energy flux balances the reflected 
energy flux in all the reflected modes. (In the experiments described below we did not 
observe appreciable levels of such harmonics in the far field.) Also, larger amplitude 
waves will have an associated second-order mass flux towards the shore, so there 
must be a corresponding outflow. With perfect reflexion this is realized through the 
reflected wave. But if there is wave absorption then, within the framework of potential 
theory, the additional outflow must be distributed throughout the depth (cf. Phillips 
1966.) 

If the effects of surface tension are included, there appears a term deriving from the 
rate of working of the surface-tension forces a t  the shoreline. There is no obvious 
physical reason that enables us to determine the sign of this term and so the possibility 
arises that  the reflexion coefficient could exceed unity. (It is apparent from experi- 
mental results, as indicated below, that surface-tension effects can be important on 
the laboratory scale, but in geophysical contexts it is inconceivable that this could 
be the case.) 

3. Linear boundary-layer theory 
If there is a periodic to-and-fro motion of a fluid above a rigid boundary, the thick- 

ness of the Stokes boundary layer is? O(v/w)*. We shall assume that this thickness is 
small compared with the depth of the fluid and with the radius of curvature of the 
bottom, but note that the first of these assumptions must break down very near the 
shoreline. It is also assumed that the inertial terms in the momentum equation may 
be neglected: this can be justified a posteriori if the slope of the boundary is small 
everywhere. Then, with regard to axes (s, n) parallel to and normal to the boundary, 
the tangential momentum equation is given approximately by 

aulat = va%/an2, 

where u is the velocity in the s direction. The solution of this equation satisfying the 
no-slip condition a t  the rigid boundary is 

in which U ( s )  is the tangential velocity just ‘outside’ the boundary layer and w is 
the angular frequency of the motion. For such a velocity distribution i t  follows from 
the continuity equation that there must be a normal velocity V ( s )  e-zwt ‘outside’ the 
boundary layer, namely 

V ( s )  = ( v / w ) i e z n / 4 d U / d s .  

Thus, following the standard procedure, we find that the corrected boundary condition 
for the velocity potential at  the bottom is 

a $ / a n  = - ( v / w ) ~  e7n14 aZ$/as2. (3.1) 

t For the experiments described below tho quaiitity ( v / w ) $ z  0.3 mm whereas, for 10-second 
waves and a value of v of 10 om2 s-l (as one might expect for ocean beaches), we have that 
( v / o ) *  % 4 cm. Some estimates of an ‘eddy’ viscosity, under rotighly these conditions, are given 
In Jonsson & Carlsen (1976). 
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This may be interpreted physically as correcting the no-flux condition at  the rigid 
boundary for the effects of the displacement thickness of the Stokes boundary layer. 

If we further suppose that the waves are of small enough amplitude for the non- 
linear part of the free-surface condition to be neglected,t the resultant mathematical 
problem at hand is to find the complex-valued function $ (where Re ($ exp ( - iwt))  
is the velocity potential) such that 

A$ = 0, ( 3 . 2 ~ )  
and 

$z- ( d / g )  $ = 0 on z = 0, (3 .2b )  

together with ( 3 . 1 )  on z = -b(x). Here x and z respectively represent horizontal and 
vertical coordinates with the origin at  the shoreline. 

The asymptotic structure of the waves for large x cannot be taken in the same form 
as that employed in 9 2 because, owing to the viscous attenuation, the wave could not 
have travelled from infinity if it  felt the bottom everywhere. So, for the present, we 
shall assume that b -+ co sufficiently rapidly with x that $ can be written in the form 

4 (e - ikz  + r e i k ~ )  ekz 

for x large and positive. In this expression r is a complex number and the wavenumber 
k is given by 

k = d / q .  (3 .3 )  

Let us now consider an energy argument of the kind used in the proof of the result 
quoted in 5 2. Starting from the identity (cf. Fitzgerald 1976) 

ImJ $*A$=o ,  
D 

where * denotes the complex conjugate and D is the region occupied by the fluid, we 
find that 

The integral here is evaluated along the bottom. 
A natural length scale for the waves is given by the relation ( 3 . 3 ) .  On this scale 

the contribution per unit length to the damping of the waves is O((2vw3)*/g} which is 
usually small. But, for a beach typically of slope a, the length scale of waves signi- 
ficantly influenced by the bottom is O(ga/w2).  Moreover, the damping occurs over a 
distance of O( l/a) so a better measure of the damping effects is likely to be given by 
the parameter ( 2vw3)*/ga2. It is therefore apparent that a more detailed calculation 
should be made. 

t It would not be difficult to modify this theory to include a small nonlinear correction. The 
effects of surface tension can also be included. On the other hand, it would be more difficult to 
account for the boundary-layer structure in a consistent manner a t  this level (see, for example, 
Dore 1977). 
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4. Linear shallow-water theory 
If we consider only that zone of the beach for which the shallow-water approxima- 

tions can be used it is possible to develop a simple analytic theory.? Let us suppose 
that the slope b'(z) of the bottom is small everywhere, being typified by a parameter a. 
It follows from (3.2), for dynamics permitting a wave-like response, that the horizontal 
scale L of the motions is 

L - ug/w2.  

The corresponding vertical length scale is EL. These suggest the introduction of scaled 
coordinates ( X ,  2) defined by 

X = xlgaw-2, Z = z/ga2w-2, (4.1) 

and let us suppose that the bottom is now specified by 2 = - p ( X ) ,  where the scalings 
have been chosen so that p' is of unit order. Equations (3.2) and (3.1) are then trans- 
formed respectively to 

9zz + a29xx = 09 ( 4 . 2 ~ )  

q5z-a2$=0 on Z = O ,  (4.2b) 
and 

$z + a2p'$x = ( ~ ~ 3 / g 2 ) 4  ein/4[( 1 - a2p" #xx - 2 ~ ~ 9 ~ ~ 1  (1 + ~2p')-4 

on Z =  - P ( X ) .  ( 4 . 2 ~ )  

If we assume a power-series expansion in Z for 9, i t  follows from ( 4 . 2 ~ )  that  9 can 
be written in the form 

9 = a0(x) + q ( x )  z - a2{~qz2+ 4 ~ 3 3 )  + 0(a4), 

where Qo, 
terms O(a4). The boundary condition (4.2b) a t  the free surface indicates that 

so that 

may also include terms depending on a, but we do not intend to retain 

= a 2 ~ o  + 0 ( ~ 4 ) ,  

9 = (D,(X) {i + a 2 ~ )  - ~ Q ; Z Z +  0 ( ~ 4 ) .  

Qo + @ ; p ( X )  + p ' ( X )  Qi = [(uw3)4/ga2] einl4Q; + O(a2). 

Thus, the boundary condition ( 4 . 2 ~ )  a t  the bottom leads to an equation for Qo namely 

(4.3) 

I n  this equation the effect of the boundary layer on the bottom, as expressed by the 
term on the right-hand side, is enhanced by the factor a-2. So, although the dimension- 
less number (vw3)4/g might suggest very small viscous effects, it would appear from 
(4.3) that the viscous effects can play an important role on beaches of small slope. 

If we set [ (vw3)4/ga2]  ein/* = y then (4.3) can be written as 

t When shallow-water theory is not applicable everywhere the problem can be formulated in 
terms of a fairly straightforward integral equation. However, we have not pursued this line here 
because the results indicate that virtually all the damping omurs in zones for which the shallow- 
water approximation is a good one. 
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which, for the particular case of a plane beach, reduces to avariant of Bessel’s equation, 
namely 

Define a new variable given by 
6 = 2(X  - y)) ,  

with the branch defined by the requirement that 6 should have a large positive real 
part when X is large and positive. Then (4.5) becomes 

d20, Ida) 
-+->+a), = 0, 
dE2 5 

and this is Bessel’s equation of zero order. 

4.1. Some limitations 

Our main concern in this paper is to examine how well the basic equation (4.4) 
describes the experimental situation for periodic wave trains incident on beaches. 
Equation (4.4) can be interpreted in terms of a reduced effective depth arising from 
a complex displacement thickness of the bottom boundary layer. However, in any 
practical realization of such flows there are a number of other effects that may be 
important, especially in the zone near the shore, and these can complicate the choice 
of appropriate boundary conditions for the model. 

In the laboratory, for example, the effects of surface tension near the shoreline and 
the manner in which the shoreline is established can have a bearing on the results 
(cf. fi 6). If the surface slopes are small everywhere, the theory leading to (4.4) can be 
modified to allow for surface tension. This leads to the equation 

p [ ( y  -p, 0% - p’a);] + (p - y )  a); - pa);+ = 0, (4.7) 

where p = Tw4/pg3a2, with T representing the surface tension. In hydraulics experi- 
ments p is usually quite small, typically of the order of 0.01 or less, though this is 
not always the case (e.g. see some experiments made by Feir 1966, where p took 
values as large as 0.5). For small values ofp, (4.7) suggests that surface-tension effects 
will be directly significant only in a zone close to the water line of dimensionless extent 

In practice the wave amplitudes are not infinitesimally small, so nonlinear effects 
might be important. These effects could be manifested either by wave breaking or 
through the generation of higher harmonics leading to a change in wave profile close 
inshore. Associated with the former of these will be an energy loss from the periodic 
wave structure, with a consequent reduction in the reflected component; the latter 
is probably of less importance. For example, at  second order in the amplitude of the 
incident wave, we can expect mean flows and second-harmonic flows to be generated 
by the incident wave field. It is only at third order that these terms contribute to the 
balance of a flow-field component with the frequency of the incident wave. Therefore, 
a rough estimate of the importance of these effects may be obtained from the change 
in depth arising from the second-order mass flux associated with the incident wave. 
This change is O(aZwz/g), where a is the wave amplitude, (see Phillips 1966, p. 55) 

O(P+). 
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which suggests that the present theory should not be used when aw2/g N ax, or 
X N a2w4/g2a2. (In the present experiments this length scale was about on ocean 
beaches it might typically be 10.) 

The model itself derives from the assumption that the boundary layer on the bottom 
and the potential flow above it can be considered effectively as separate zones. This 
restricts the validity of the model at  most to regions where the displacement thickness 
does not penetrate the surface. Therefore, the use of (4.4) is not justifiedt when X is 
as small as 171. 

The inevitable conclusion from these considerations is that the model equation (4.4) 
should not be used in a zone near X = 0. However, there are a number of possibilities 
as to which are the dominant effects to be included near the shore. Indeed, it is likely 
that no single inshore boundary condition will be entirely appropriate for (4.4) for 
the range of experimental results available. 

In  addition, some care is needed in deriving a boundary condition at  large distances 
from the shore. If the beach shelved indefinitely, the incoming waves would feel the 
bottom at a depth O(g/w2) ,  which corresponds to a value of X of order a-2. In the 
experiments to be described the extent of the beach was much less than this, so we 
have specified a value, X,, at the toe of the beach, at which the amplitude of the 
incident wave is to be defined. 

4.2. Some properties of the ‘on-shore ’ zone 

On typical ocean beaches the parameter Iyl can be quite large (values of 16 seem not 
to be unreasonable, cf. 8 6) so that we can make use of asymptotic solutions to examine 
the properties of the waves. Solutions of (4.6) take the form 

qj(6)  = AH(:) ( [ )  + BH(%), (4.8) 

where H $ ) ,  are the Hankel functions and A ,  B are constants. For large positive 
values of Re (g) the Hankel functions admit asymptotic expansions of the form (see 
Abramowitz & Stegun 1965) 

from which we see that the second term of (4.8) represents the incident wave and the 
first term the reflected wave. If we write g( = 2 [ ( X  - yo )  - iy,])) in the form 

2pd(cos $8 - i sin go), 

where yo = l y / / J2 ,  p = [ ( X - y o ) 2 + y i ] )  and 8 = arctan[y,/(X-yo)], it is apparent 
when Iy ]  is large that the asymptotic form (4.9) provides a good representation of 
(4.8) over the entire domain. In particular, when X 9 yo, the amplitude of the incident 
wave varies in space approximately as X-4 exp ( - y , / X J ) .  Thus, as the wave runs up 
the beach its amplitude initially grows like X-a, as expected from inviscid theory. 

t In this context Sir James Lighthill (private communication) has pointed out to US the need 
to  include an allowance for blie effect of the boundary layer on the surface boundary condition. 
I n  a particular case, namely the reflexion of waves from a vertical barrier in deep water, he has 
shown that this effect can be significant, especially for waves whose wavelength is of the order of 
or smaller then that of t,he boundary-layer thickness. 
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But eventually the exponential term limits the wave amplitude to a maximum value 
at  X = 21yI2 (of approximately 0.5l(alyl)-* times the amplitude a t  X = a-2, when 
a1 yl is small). The amplitude then decays through the dominant effect of the exponen- 
tial term (taking a value a t  X = Iy (  of approximately 2.24e-0’431rl times that at the 
maximum). It is therefore apparent, for large values of Jyl, that the incident wave 
will have been severely attenuated before it reaches the ‘inshore’ zone X - (71, 
where the problem needs to  be reformulated. This ‘inshore’ zone appears as a ( l / ly/)-  
neighbourhood of the shore, when viewing the flow with an X-scale of O(l y I2 ) ,  suggest- 
ing the use of an inner and outer formulation. 

For this reason we decided to examine the structure of the eigensolutions for the 
potential flow in a wedge, satisfying the free-surface condition a t  the upper surface 
and the condition (3.1) at the bottom. We seek solutions in terms of polar co-ordinates 
(a ,  0) with the origin a t  the shoreline, of the form 

$,, = aA{Fo(O, A) + uF,(O, A )  + . . .}, 
where h is a real parameter and F,, F,, . . . are real functions. Then F, is of the form 

F, = C O S ~ ~ ,  h = k(m+&).;rr/a,  EN. 

Since a typically is small, such large values for h indicate that solutions involving 
negative powers of a would be quite large, even a t  moderate values of a, whereas 
those involving positive powers would be small. Presumably the former kind of 
solution could be ruled out on the basis of observation, with the latter suggesting that 
4 should be small in the ‘inshore’ zone. 

I n  the laboratory the values of JyJ usually range between about 0.25 and 1 or 2. 
Nevertheless, the features described above for large values of ( y (  seem broadly to 
carry over to  the smaller values. For example, the amplitude of the incident wave, 
which is proportional t o  \BH(i)(<)l is shown in figure 2 for various values of I yI . When 
compared with the case y = 0, the graphs show how the influence of the boundary 
layer eventually overcomes the shelving effect of the beach, but that the influence of 
the boundary layer is concentrated nearer the shore as 1 yJ  decreases. 

4.3. Boundary conditions 

Suppose, as indicated above, we refer to the wave amplitudes at the point X = X,, 
corresponding to the toe of the beach, to  determine the reflexion coefficient. Let 
6, = 2(xT - y)* and suppose that X ,  is large enough for the asymptotic representation 
to  be utilized. Then it follows that, a t  X = XT, the ratio of the amplitude of the 
reflected wave train to that of the incident wave train is 

I A I exp [ IY I /(2X,t*l/ IBI exp r - I Y I /(=,)*I. 

Thus, the reflexion coefficient, when determined by amplitudes a t  the toe of the beach, 
is given by 

r ( 7 )  = IA/Bl exP(lYl(2/XT)f), (4.10) 

where I A / B (  is to be determined from the ‘inner’ boundary conditions on 4. 
I n  view of the complicated physical situation near the shore we decided not to  

attempt a detailed calculation of the ‘inner’ boundary condition. But, guided by the 
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FIGURE 2. The amplitude according to (4.8) of the incident wave, 
relative to its amplitude a t  X = 25.0, for various values of 171. 

observation in our experiments that there was very little movement a t  the shoreline 
and by the preceding discussion, we have fixed on the condition 

$(O) = 0. (4.11) 

While the choice of (4.11) was influenced by observations from our own experiments, 
we recognize that this boundary condition might be quite inappropriate when com- 
parisons are to  be made with other experiments. (One situation in which we would 
anticipate significant errors from this source is when IyI is fairly small and very little 
energy is absorbed in the off-shore zone. Then the wave amplitudes can become quite 
large leading to  substantial movement a t  the shoreline or to wave breaking.) More 
generally, the inshore zone might be expected to  provide an ‘effective’ origin, Y ,  for 
the outer flow, such that q5( Y )  = 0. To examine how changes in Y might affect the 
reflexion coefficient, let us suppose that Y is real and lies in the interval [ - Iyl ,  Iyll. 
Then, if we write tY = 2( Y -y)a,  we have that 

(4.12) 

A graph of the reflexion coefficients thus obtained, for Y = - I yI , 0, I y 1, and with X, 
infinite, is given in figure 3(a) .  It may be seen from the graph that the reflexion co- 
efficient is not especially sensitive to variations in Y :  for example, with JyI = 0-5, 
about 0.5 yo of the energy would be reflected if the relevant boundary condition were 
$(O) = 0, and less than 5 % of the energy would be reflected if we took $ ( l y l )  = 0. 
Moreover, the curve rlyl is likely to  be an overestimate of any shift induced by the 
inshore zone, since the condition Q ( l y l )  = 0 would seem to imply considerable con- 
straints on the flow field. 

Although the reflexion coefficient might not be particularly sensitive to the value 
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FIGURE 3. (a) The reflexion coefficient r as a fnnction of the parameter Iyl, according to (4.12). 
---, ro; , rlyl; .... ., r +,,. (6) The dependence of r,, on the beach slope for o = 9-06 s-l, 
Y = 0.01 em2 s-1. 

of Y ,  the phase of the reflected wave depends crucially on Y .  Thus, the locations of 
the maxima and minima of provide a separate check on the appropriateness of the 
boundary conditions (cf. 5 6). 

The graphs in figure 3 ( a )  show the dependence of r on the parameter 1 yI , from which 
it would appear that beaches having values of IyJ in excess of about 0.25 are very 
efficient absorbers of energy. The graph in figure 3 ( b )  shows how ro depends on the 
beach slope for the particular values of u and w used in the experiments to be described. 

A simple way of modifying the 'inshore ' boundary condition and, in particular, the 
phase of the reflected wave is to impose the condition 

# ( Y )  = 0. (4.13) 

Such a condition corresponds to zero horizontal velocity at the position Y and could 
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FIGURE 4. The reflexion coefficient for a plane beach terminated by a vertical wall as givrn by 
(4.14), with cz = 0.090, w = 9.06 s-l, v = 0.01 cm2 s-l, 0 indicates the value for r0 given by 
(4.12) for these conditions. 

be achieved in practice by placing a vertical wall a t  a distance Y from the shore. 
(Of course, for the reasons outlined earlier, the ‘virtual’ position of the wall might not 
correspond exactly to its physical location.) 

The reflexion coeficient arising from the condition (4.13) is 

(4.14) 

a graph of which is given in figure 4 for lyl = 0.34 and X, infinite. Since this is the 
value of Iyl to  be used in our experiments i t  is interesting to compare values of r 
obtained from (4.14) and (4.12). For Y = 0, (4.12) gives a reflexion coefficient of 0.1 1 
compared with a value of 0.19 obtained from (4.14), whereas with Y = I y f  the respec- 
tive values of r are 0.30 and 0.41. The latter number indicates that, even with a re- 
flecting wall a t  X = l y / ,  approximately 84 yo of the incident wave energy would be 
dissipated on the beach. 

Thus, when IyI is not too small, we see that the model equation (4.4) predicts that 
a large proportion of the incident wave energy will be absorbed in the boundary layer 
on the beach, irrespective of a wide variety of ’inshore’ conditions. In  this sense, the 
model appears to be fairly insensitive to  the choice of the inshore boundary condition 
and we have decided therefore to fix on the boundary conditions (4.11) and (4.13) 
for the ensuing discussion. 

5. Practical considerations 
I n  seeking to test the results of these model calculations in the laboratory there are 

a number of experimental difficulties to be faced. As Ursell, Dean & Yu (1960) and 
Meyer & Taylor ( 1972) have observed, accurate measurements of reflexion coefficients 
can be rather tricky. One of the major problems is the establishment of a wavefield 
that is genuinely stationary over a period of time sufficient to allow a detailed set of 
measurements to be made. In addition, the relative levels of the ‘incident’ and 
‘reflected’ components of the wavefield must be inferred from observations of the 
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waves. For these inferences to be reasonably reliable it is necessary that the wave 
amplitudes be sufficiently small that nonlinear effects are negligible. 

The usual arrangement for measuring reflexion coefficients is a uniform channel 
with a beach at  one end and a wavemaker at the other. The normal practice is to drive 
the wavemaker with controls on the frequency that are tight enough for variations 
in the wavefield to be negligible. The amplitudes actually established in the wavefield 
are, for a given amplitude of the wavemaker, determined by the energy balances in 
the channel: the energy taken from the wavemaker, which must balance the total 
dissipation, depends on the wave amplitude at  the paddle and the phase of these 
waves relative to the motion of the wavemaker. 

These (and other) factors suggest that it is not worthwhile to attempt too accurate 
a description of the wavefield. So, in the uniform part of the channel, let us suppose 
that the flow field consists of two attenuating plane waves travelling in opposite 
directions, with the vertical displacement of the free surface being given by the real 
part of 

(5.1) y = [o(e(b--ik)5 + !). e-(b-ik)2+is e iw t*  1 
Here Pis the horizontal co-ordinate and all the parameters are real, with 6 representing 
the decay of a wavemode along the uniform part of the channel, E being a phase factor 
and k , w  denoting respectively the wavenumber and the frequency. If we take the 
origin for P to be at  the toe of the beach, then lo could be interpreted as an effective 
amplitude for the wave incident on the beach and r could be thought of as a 'reflexion 
coefficient' for the beach. 

To determine r from measurements of the amplitude of the wave field we write 
p = r e-285. Then the wave amplitude at a given station, is 

~ I J o ) ~  = ~ o e ~ ~ [ I  + 2 p c o s ( 2 k ~ + e ) + p 2 ] ~ .  (5.2) 

lc (Z) l / [o  N ebs+re-bscos(2kZ++)+0(r2) ,  (5.3) 

If  p is small we have that 

and so we can expect the graph of the wave amplitude to have an oscillatory compo- 
nent, at  hadf the wavelength of the water waves, superimposed on a mean level that 
decays from the wavemaker to the beach at  the rate 6. 

= c0(l + r )  and 
inf = go( 1 - r ) ,  so that r can be determined as 

For the particular case of 6 = 0 we have from (5.2) that sup 

These formulae suggest that we extrapolate from the values of the local maxima and 
minima of 151 in the uniform part of the channel to estimate effective values at  Z = 0 
and then use an expression of the form (5.4) to estimate r .  

However, for a closed channel, the value of r thus defined may depend not only on 
the properties of the beach but on other factors, particularly the location of the wave- 
maker relative to the beach. When the absorption on the beach is large there will 
only be a small amount of wave energy reflected back to the wavemaker, and as this 
is not likely to affect the flow significantly it would appear that small values of r 
should be fairly reliably predicted by the above procedure. But it is possible that 
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tuning effects for the complete system could give rise to anomalously large values of 
r ,  so for large values of r it  may be necessary to consider the system as a whole. 

5.1. Experimental apparatus 

Since a considerable amount of experience had already been gained from other experi- 
ments with surface waves and also taking into account the above considerations, we 
decided to work with the following apparatus. A beach of slope 01 = 0.090 rad. was 
placed with its toe at a distance of 195.8 cm from an end of a uniform channel where 
there was a piston-type wavemaker. The bed of the channel had been carefully levelled 
up so that the still-water depth, except for the region over the beach, varied by no 
more than ~t: 0.01 cm from its mean value (though the actual water level, at  a given 
station could be set to 0.001 cm through the use of a pointer gauge). For the experi- 
ments to be described below the mean depth was 3.00 cm. The channel was 30 cm 
wide. 

The wavemaker was driven in an oscillatory manner by a synchronous motor forcing 
a crank attached to the paddle. When using very small amplitudes, namely about 
0.01 cm of water wave, the waveforms of both the paddle and the water surface were 
very nearly sinusoidal. For all the experiments described below care was taken to 
ensure that the amplitudes were small enough for nonlinear effects not to be of any 
real importance for the motions in the uniform part of the channe1.t The frequency 
for the driving voltage for the synchronous motor was derived from a crystal oscillator, 
which provided an extremely accurate frequency control, virtually eliminating phase 
drifting of the paddle. This was reflected in the observed steadiness of the wave field. 

The conditions at the beach are important. For these experiments we used a plain 
sheet of perspex for the beach surface. The perspex was rubbed down with a very fine 
grade of emery paper, enabling the beach to retain a film of water well beyond the 
natural shoreline. This ensured even wetting at  the shoreline and avoided the forma- 
tion of a contact line at the shore, a feature we hoped might minimize the unknown 
influence of surface tension there (see $6) .  Before the start of each experiment the 
surface of the water was skimmed with a vacuum pump. In order to modify the 
conditions at  the shore some experiments were carried out with a vertical wall placed 
at  various distances from the still-water line. This wall was a piece of square brass bar 
which spanned the channel and which had one face milled to the angle of the beach. 
The seal between the edges of the beach and the walls of the channel can be quite 
important: if it is not good, the wave-absorption properties of the beach can be 
changed significantly, as we shall indicate below. 

The wave amplitudes were measured with a proximity gauge, a description of which 
is given in Barnard & Pritchard (1972). The principle on which the gauge works is 
that the capacitance between two plane electrodes can be related to the distance 
between them ; the electronics associated with the instrument convert this relationship 
to a voltage which depends linearly on the distance between the electrodes, for a 
fairly large range of distances. The working range is determined, roughly, by the 
size of the electrodes. In the present case, one of the electrodes was the surface of the 
water and the other was basically a small plate (of diameter 1-1 cm, excluding its 

t A detailed quantitative account of the importance of nonlinear effects in this experiment arc’ 
given in Bona, Pritchard & Scott ( 1  980). 
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Fiaum 5 .  The observed wave amplitudes along the channel when 
w = 9.06 s-l, a = 0.090, IyI = 0.34. 

‘guard ring’) clamped just above the free surface. This plate acted as a transducer to 
‘sense’ the proximity of the water surface. The instrument is extremely versatile and 
will respond to frequencies up to  a t  least 1 kHz. Accordingly we were able to make 
continuous recordings of the wave profile a t  various positions along the channel, 
from which the wave amplitude was determined. The wave amplitudes thus measured 
should have been accurate to  better than 1 yo. 

We decided, for a number of reasons, to work with a wavelength-to-depth ratio of 
about 12: 1. In the first place we had already established a considerable amount of 
experience under these conditions (e.g. see Bona, Pritchard & Scott 1980); but also 
the increased dissipative effects in shallow water help to  offset the importance of any 
phase drifting of the wavemaker. Moreover, i t  is crucial that the wavelengths be 
larger than the channel width or the presence of transverse waves can be damaging 
(see the above-cited papers). 

6. Experimental results 
The wave profiles shown in figure 1, although having nonlinear characteristics near 

the shoreline, are very nearly sinusoidal a t  the larger distances from the shore. The 
wave forms in the uniform section of the channel were also very nearly sinusoidal in 
time, indicating that there the amplitude of the wave modes a t  the forced frequency 
should be given, to  a very good approximation, by half the trough-to-crest height. 
For convenience we shall also use this measure in those cases (near the shore) where 
the waves have a noticeable harmonic content. 

6.1. T h e  decay rate along the channel 

The results of a measurement of 15) along the channel and over the beach are given 
in figure 5 .  In  this figure, and in the results to follow, the wave amplitudes are given 
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as a proportion of the water depth in the uniform section of the channel. As anticipated 
in 5 5, the measurements indicate a gradual decay in amplitude of the mode propagating 
towards the beach, together with an ‘oscillatory’ component to 1(;1 arising from the 
reflected wave. The measurements over the beach are discussed below. 

An empirical estimate of the rate-of-decay of the wavemode propagating toward 
the beach can be made via (5.3), giving a value of 1.25 x cm-l for the data of 
figure 5. A theoretical estimate of the decay rate, made from boundary-layer argu- 
ments of the kind described in $43, 47 (and see Hunt 1952) suggest a value of 
7.70 x lo-* cm-l, which is about 40 % below the measured value. Since the free- 
surface boundary layer gives a decay rate of about & of this value (see Landau & 
Lifschitz 1959) it would appear that  either surface contamination, or the zone near 
the meniscus a t  the side walls of the channel played a significant role in determining 
6 (cf. Miles 1967). However, i t  should be noted that the decay rates are, in practice, 
so small that seemingly minor effects can be important1 in determining the actual 
value of 6. 

For the results shown in figure 5 the ratio of nonlinear to  dispersive effects was 
about one. Thus, although there was very little evidence that higher harmonics were 
present in the wavefield in the uniform section of the channel, another experiment 
was made a t  amplitudes of about a fifth of those shown in figure 5. The decay rate 
and the reflected component were very nearly the same as those observed for the 
motions a t  the larger amplitudes. 

6.2. ReJlexion coeficient 

Following the procedures outlined in § 5 we have used, as shown in figure 5, the local 
maxima and minima of in the uniform part of the channel to estimate an ‘effective’ 
reflexion coefficient a t  the toe of the beach by means of a formula of the kind given in 
(5.4). For the data of figure 5 this leads to an estimate for r of 0.114 (indicating that 
the beach absorbed about 98.7 yo of the wave energy incident upon it)  and is typical 
of the results observed on different scales by other workers (see, for example, Greslou & 
Mahe 1955, Ursell et al. 1960). The reflexion coefficient ro predicted by (4.12) for the 
conditions of this experiment, is 0.106, which is remarkably close to the observed value. 
Indeed, such close agreement is probably somewhat fortuitous, as we shall indicate 
below, but it does suggest that this kind of theory can be used to describe the major 
features of the wave-absorption process in our experiments. In  this experiment 
IyI = 0.34, corresponding to a horizontal distance of about 0.3 cm. 

The comparison shown in figure 6 indicates that  the theory predicts much larger 
wave amplitudes near the shore than those measured. However, for this comparison 
we have had to make measurements from wave profiles of the kind shown in figure 1 : 
near the shore these were clearly influenced by nonlinear effects; also, with the 

t In tliese calculations (based on tlir: lineitr form of tlie free-srirface boundary condition) the 
‘ exact’ dispersion relation arid deptli structure for the outer flow were used. 

$ For waves of siifficiently siriall arnplit,ridc tlie contact line of tlie water surface with the walls 
of tlie chamel appeared riot to move under the passage of tlie waves. But at larger amplitndes 
tliis is riot always the case and tliere is evidence (see Barriard, Mahony & Pritchard 1977) 
t,o suggest that the damping rate of waves is riot independent of the amplitude. I n  many of the 
present experiments the walls of thc channel were lined n.ith adhesive cotton bandage which 
was wet. I n  this case a contact line was riot so easy to discern. 
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FIGURE 6. A comparison of the wave amplitudes over the beach with the theoretical 
amplitudes predicted by (4.8). The data are taken from figure 5. 

‘shorter wavelengths’ encountered near the shore there may have been some in- 
accuracies introduced by the proximity gauge. The other feature of particular interest 
in figure 6 is the comparison of the positions of the nodes and antinodes of (51 and, in 
this respect, the theory appears to have predicted the empirical results very well. 

The comparison made in figure 6 is an exacting test of the theory since the only 
arbitrariness in the theoretical solution is afforded by the specification of a wave 
amplitude, which has been chosen at the toe of the beach. It should, therefore, provide 
a good test for the choice of the boundary condition at  the shore, since this has a 
strong influence on the locations of the maxima and the minima of 151, which are 
determined through the reflected wave component. Thus, the agreement here again 
suggested to  us that the theory embodies the essential features of the absorption 
mechanism. 

6.3. Extraneous factors 

The reflexion coefficient from a beach can depend very sensitively on a number of 
features and we would now li.ke to illustrate some of these factors, the first of which 
leads to a reduced reflexion coefficient and would appear to  be a useful strategy to 
adopt in the design of beaches in the laboratory. 

( a )  Leakage at the sides of the beach. We have found that by deliberately allowing a 
leakage past the sides of the beach the reflexion coefficient can be influenced signifi- 
cantly. For example, with exactly the same conditions as those for the above experi- 
ment, except that a gap of 1 cm was left between the edge of the beach and the wall 
of the tank, the reflexion coefficient was reduced to  0.060. 

(b)  Surface contamination. With most laboratory experiments it is impossible to 
avoid a certain amount of surface contamination. Although the surface of the water 
was skimmed before each experiment, contaminants from both the water and the 
air will reach the surface during the course of an experiment and their importance 
can only be estimated from the ‘repeatability’ of the experiment. Fortunately this 
turned out to be very good if the measurements were made within an hour or so of 
skimming the surface. Moreover, owing to the very good control over the wavemaker, 
repetitions of the experiment over the course of a number of years gave virtually 
identical results to  those quoted above. 
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Experiment 

1 2 3 4 
A 7 ------ 

W / ~ R  (Hz) 1.25 2.10 2-70 1-25 

r measured 0.33 0.30 0.08 0.23 
r,, predicted 0.16 0.07 0.05 0.16 

TABLE 1. Reflexion coefficients for waves incident on a beach of angle 6.1”, 
as given by Feir (1966), are compared with the present theory. 

IYI 0.198 0.43 1 0.628 0.198 

While making some dye studies of the zone near the shoreline we inadvertently’ 
deposited a little surface-active material (the dye Gentian violet) on the water. This 
rendered the surface layers near the shore almost immobile and had a dramatic 
influence on the flow patterns near the shore. 

(c)  The contact line on the beach. The nature of the contact line of the water with 
the beach appears to be very important in determining the magnitude of the reflexion 
coefficient. The fact that, in our experiments, the beach had been roughened meant 
that a film of water could be retained well above the natural shoreline for a considerable 
period of time. The use of a ‘wet’ beach meant that the contact line was effectively 
eliminated and indeed the only simple and reliable way of detecting the position of 
the shoreline was to look for a small ‘irregularity’ in the reflected image of some object 
(usually the strip lighting) in the laboratory. These features made it difficult to be 
definitive about the movement of the shoreline under the action of the waves, but the 
overall impression was that there was very little, if any, movement of the shoreline. 
A beach constructed from expanded polystyrene, but which had also been roughened 
to  retain a water film, gave almost identical results to  those described above. 

If, on the other hand, the water does not ‘wet’ the beach but, in the undisturbed 
state, has a definite contact angle a t  the shore, it would appear from some measure- 
ments of Feir (1966) that  the reflexion coefficient can be affected significantly. Feir 
measured the reflexion coefficient as a function of wave steepness, but we consider 
here only the experiments at the smaller wave amplitudes. Four experiments are 
quoted, two of which were made under essentially the same conditions but yielded 
reflexion coefficients of about 0.23 and 0.33. Since the experiments were carried out 
with extreme care, this variability suggests just how important the conditions at  the 
surface and the shoreline can be in determining the reflexion coefficient. 

A summary of Feir’s results, together with the predicted reflexion coefficients from 
the present theory (using the boundary condition (4.11)) are given in table 1.  In  this 
case the theoretical reflexion coefficients are quite a bit smaller than the measured 
values. One possible explanation for this is that, near the shore in the undisturbed 
state, there was a large deviation of the free surface from the horizontal. (It is interest- 
ing that the contact line a t  the beach seems to have remained fixed in these experiments, 
even though there was, under the action of the waves, considerable flexing of the free 
surface about this pivot.)? The wave amplitudes for Feir’s experiments were, by and 
large, greater than those used in the present measurements. 

t For Feir’s measurements, the surface-tension parameter ,u (see (4.7)) took the value 0.025 
for experiments 1 , 4  and the values 0.20 and 0.54 for experiments 2 and 3 respectively, suggesting 
that the surface-tension effects were not always unimportant. 

For the measurements described here ,u took a value of 0.063, so that surface tension was 
unlikely to have been very important for our experiments. 
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Run no. 

1 2 4 6 7 8 9 13 
w/27r (Hz) 0.310 0.595 1.087 1.299 1.266 1.163 1.087 0.901 
IYI 0.060 0.159 0.393 0.513 0.493 0.434 0.393 0.296 
T measured 0.041 0.042 0.021 0.043 0.039 0-069 0.059 0.024 
ro predicted 0.323 0.187 0.085 0.065 0.067 0.077 0-085 0.112 

Run no. 

14 15 16 17 18 19 21 22 
w/27r (Hz) 0.613 0.478 0.272 0.787 1.075 0.800 1.266 1.176 
IYI 0.167 0.115 0.049 0.242 0.386 0.248 0.493 0.442 
r measured 0.021 0.057 0.451 0.036 0.057 0.033 0.022 0.036 
ro predicted 0.183 0.230 0.350 0.134 0,086 0.132 0-067 0.075 

Run no. 
& 

23 24 
w/2n (Hz) 1.053 1.042 
IYI 0.374 0.368 
r measured 0.054 0-055 
ro predicted 0.088 0.090 

TABLE 2. Reflexion coefficients from Ursell et al. (1960) for a beach of slope DL = 0-0681, compared 
with the present theory. Note that the beach allowed seepage past its edges. 

6.4. Other experiments 

A very careful set of measurements of wave reflexion from a beach was made by 
Ursell, Dean & Yu (1960). In these experiments the beach was of a plane, impermeable, 
varnished material, with a small gap of about 0.6 cm between the beach edges and 
the walls of the flume, allowing seepage past the edge of the beach. Since it is not clear 
whether or not breaking took place over the beach, comparisons with this work should 
be treated with some caution. Nevertheless we felt they should be made. Listed in 
table 2 are the results given by Ursell et al. (using their numbering for the experi- 
ments) together with the reflexion coefficient predicted by (4.12), taking X,, to be 
infinite. 

Apart from runs 1 ,  2, 14, 15, the agreement between the measured and predicted 
values of r is close enough (especially since the effect of seepage should be allowed for) 
to suggest that a good proportion of the wave absorption occurred through the effects 
of bottom friction. The four predictions giving poor agreement with the measured 
values were for experiments a t  much larger wave periods, giving smaller values of 171 
than the other runs; that is, with the exception of run 16, which yielded an anomalously 
large reflexion coefficient, and was reasonably well predicted by the theory. 

A set of measurements of reflexion coefficients for waves covering a fairly large 
range of amplitudes has been reported by Greslou & Mahe (1955) (and see also Meyer & 
Taylor 1972). Unfortunately complete information regarding the details of the experi- 
ments is not given, but the suggestion from their paper is that the reflexion coefficient 
was essentially independent of the frequency for the range of frequencies covered in 
the experiments. Indeed, from the scatter among the data given in the paper, it  would 
appear that the reflexion coefficients were not determined to an accuracy of better 
than about -t 5 % and, given this variability, the effects of changing the frequency 
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U - L 
\ 

1 1 1 1 
10 2 0  3 0  6 
--- - .-. _-- 

T = 0.9 s 0.01 0.04 0.16 0.35 
T = 1.6 s 0.04 0.11 0.27 0.55 

0.04 0.07 0.14 0.44 

r,, predicted 

r measured 

TABLE 3. Reflexion coefficients measured by Greslou & Mahe (1955) for beaches of various slopes. 
The theoretical va.lues are given for periods a t  the ends of the range covered by the experiments. 

0.008 

0.006 

’” 0.004 

0,002 

0 5 .o 10.0 15.0 20.0 

( W 2 l d X  

FIGURE 7.  The wave amplitudes observed in the main part of the channel with the same operating 
conditions as for the results of figure 5 ,  except that the beach was terminated by a vertical barrier 
at  a distance of 2.0 cm from the ‘ natural’ shoreline. 

were probably not noticeable. Nevertheless, the overall shapes of the graphs for the 
observed reflexion coefficients, as a function of the beach slope, are similar to the one 
given in figure 3 (b ) .  Taking the reflexion coefficients observed for the smallest waves 
used in their experiments, we have compared the results with the present theory, by 
calculating the reflexion coefficients for the smallest and largest frequencies at which 
the measurements were made. The results of this comparison are given in table 3, 
and again the agreement is seen to be very good over the entire range. 

6.5. A plane beach terminated by a vertical wall 

Shown in figure 7 are the results of a measurement of the wave amplitudes observed 
when the beach was terminated by a vertical cliff a t  a distance y = 2.0 cm from the 
‘natural’ shoreline. The estimate of the reflexion coefficient made, as above, by 
extrapolating from the wavefield in the uniform section to the toe of the beach is 
r = 0.40, which is significantly below the theoretical value of 0.69 given by (4.14).  
The reason for this discrepancy may depend on a number of factors. For example, 
in the above experiment, the end wall had a layer of adhesive bandage on it so that 
it was essentially wet and the meniscus contact angle should have been very small. 
With no bandage attached to the cliff, but the conditions otherwise unchanged, we 
observed a reflexion coefficient of 0.44. Also i t  appears that nonlinear effects might 
have been important in this experiment. The wave amplitudes near the cliff were 
almost twice as large as those anywhere else in the channel and it is possible that this 
feature, coupled with the meniscus a t  the wall and the fairly small depths there 
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Experiment 

A B* C D E 
Position of wall y (cm) 1.4 2.0 2.5 4.0 4.5 
r measured 0.33 0.40 0.35 0.45 0.57 
r predicted 0.65 0.69 0.72 0.77' 0.78 

TABLE 4. Some measurements of the reflexion coefficient with a vertical wall terminating the 
beach, and the theoretical predictions given by (4.14), for w = 9.0666 s-l. Experiment (*), aa 
described in the text, was made a t  a smaller amplitude than the others. 

(approximately 2 mm), meant that the boundary condition (4.13) did not provide a 
good model for the actual flow. The dependence of the reflexion coefficient on the 
amplitude level of the wavefield is illustrated by the results given in table 4. These 
measurements, with the exception of experiment 3, were made a t  the outset of this 
study and had mean wave amplitudes at  the toe of the beach of 0.008. It is interesting 
that, with the smaller wave amplitudes used in experiment B, much larger reflexion 
coefficients were observed than those in experiments A and C.t 

As both the theory and the results of table 4 suggest, the absorption properties of 
the beach rapidly diminished as the cliff was moved out from the natural shoreline. 
Moreover, it would appear from all the data that, on these scales, the actual conditions 
a t  the shore can be very important in determining the reflexion coefficient in a given 
experiment. 

6.6. Dye studies 

It was often found in our experiments, when some crystals of potassium permanganate 
were dropped onto the beach, that  the resulting dye patterns showed some curious 
properties. An example is given in the photograph shown in figure 8 (plate 1) .  The 
study revealed quite a marked drift of dye from crystals lying on the bottom and 
in the zone near the shoreline. Some examples of this drift can be seen in the photo- 
graph, the dark spots being permanganate crystals on the bottom.$ This dye moved 
rapidly up the beach to a zone about 24 cm from the shoreline (which appears in the 
photograph as a faint horizontal line)$ and then drifted away from the shoreline 
again a t  a higher level. The drift from crystals placed fairly close to  the shoreline 
consisted of a flux down the beach and out to the deeper waters, and the overall picture 
that emerged after some time is that shown in the photograph. Of course this is only 

t With the large reflected wave components prevailing in these experiments, we also con- 
sidered the possibility discussed in § 4 that, in order to make reliable comparisons, the system 
should really be treated as a whole. This can be done by patching together, at the toe of the beach, 
two solutions of the form (4.8) (except that, in the uniform section of the tank, we can expect 
exponential functions rather than Hankel functions). We have done this patching by assuming 
that the wave amplitude is continuous and that the mass flux across the vertical plane through 
the toe of the beach is continuous. (The conditions effectively correspond to choosing $, $ z  to be 
continuous.) At the wavemaker we assume that 4z is some specified function of z. Carrying through 
this procedure when y = 1.4 cm, it was found that r should be modified to 0.59 from the value 
0.65 calculated from (4.14). But this is not nearly large enough a correction to account for the 
differences shown in table 4. 

$ Near the free surface, the expected drift towards the shore was evident. 
5 There is actually a double image of the shoreline present on the photograph, the second image 

being a reflexion of the (illuminated) shoreline in the underside of the beach. 
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a very superficial picture of the dye movements which, on closer study, revealed con- 
siderable complexity. For example, the distinct edge formed by the dye patch in this 
experiment was much more diffuse when the incident wave amplitude was decreased, 
suggesting that the feature shown here was a result of nonlinearities in the region near 
the shore. Also, in a vertical plane, there was evidence of a cellular pattern to the dye 
motions, but this was too weak to show up in the photograph. 

7. Discussion 
Our main aim in undertaking this work was to  try to  isolate some of the mechanisms 

that might be important in absorbing wave energy on beaches. When waves break on 
ocean beaches it is not clear just how much of the wave energy has already been 
dissipated on the ocean bed, but in some of our laboratory experiments the evidence 
points to this being the main means by which the wave energy was degraded. For 
this reason we wanted, if possible, to  develop a fairly consistent theory for the labora- 
tory experiments in the hope that this may provide some guidance in coming to  terms 
with the oceanographic problem. In the laboratory the comparisons between the 
theory and a wide range of experiments appears to be quite good; however, our main 
concern here was to see whether or not the theory predicted the right scale on which 
the absorption takes place, rather than worrying too much about the detailed agree- 
ment. The reason was that a number of uncertainties might have obscured the picture: 
for example, it is difficult to estimate the part played by the contact line a t  the shore, 
especially if it should move, and certainly Feir’s (1966) work indicates that  this can 
be a very delicate issue (although this particular problem appears to have been ob- 
viated in the present experiments), But, in addition, the appropriate boundary con- 
dition to choose a t  the shoreline, on the basis of a boundary-layer calculation over 
the beach, must be a matter of guesswork. Thus, the fact that the theory appears to 
predict fairly well the experimental results for a plane beach suggests to us that the 
theory embodies the essential mechanism for wave absorption in these experiments. 
In  this respect it was very interesting to us that the same theory failed badly in pre- 
dicting the reflexion coefficient when the beach was terminated by a vertical barrier 
a few centimetres off shore, thereby suggesting either that the boundary condition a t  
the barrier was not appropriate or that  nonlinearities were an important contributing 
factor in this instance. 

The theory of 5 4 suggests that the parameter IyI = (vw3)$/ga2 should determine a 
length scale on which we can expect frictional effects on the bottom to be important. 
For the experiments relating to figures 5 and 6, (71 was approximately 0.34, but it 
is also instructive to examine its size for a typical ocean beach. Here the situation is 
complicated by the choice of a suitable eddy viscosity for a turbulent flow over a 
rough bed with moving sediment, however, the work of Jonsson & Carlsen (1975) 
suggests that a value for v of 10 cm2 s-l is likely to underestimate the eddy viscosity 
on ocean beaches. Thus, for 10 s waves incident on a beach of slope 0.01 i t  follows that 
JyI should take a value of say 16, or more. Such large values suggest that the asymptotic 
structure of (4.8) for large 161 can be used, in which case the viscous effects should 
dominate the shelving effects when X < 2 1 ~ ) ~ .  This corresponds, in the present 
example, to a distance of about 125 m, whereas (yI corresponds to a distance of only 
4 m. Since the breaking zone is usually well within 125 m, this would suggest that most 
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wave breaking arises because of local variations in the beach slope near the shore, or 
through the presence of an off-shore bar. 

Certainly it would appear from the results of this study, that the boundary layer at 
the bottom plays a significant role in determining the overall energy balances for waves 
incident on a beach. 
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FIGURE 8. The result of dye movement after some crystals of pot,assium permanganate had 
been dropped onto the beach. Note that waves were being generated at the time this photograph 
was taken. 
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